Part Number Hot Search : 
A1108 DTA144EE TIP35 ADP3155 LCX16 ILD1205T F1016 ST773
Product Description
Full Text Search
 

To Download MRF141G Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www..com
SEMICONDUCTOR TECHNICAL DATA
Order this document by MRF141G/D
The RF MOSFET Line
RF Power Field-Effect Transistor
N-Channel Enhancement-Mode MOSFET
Designed for broadband commercial and military applications at frequencies to 175 MHz. The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands. * Guaranteed Performance at 175 MHz, 28 V: Output Power -- 300 W Gain -- 12 dB (14 dB Typ) Efficiency -- 50% * Low Thermal Resistance -- 0.35C/W * Ruggedness Tested at Rated Output Power * Nitride Passivated Die for Enhanced Reliability
MRF141G
300 W, 28 V, 175 MHz N-CHANNEL BROADBAND RF POWER MOSFET
D
G G
S (FLANGE) CASE 375-04, STYLE 2 D
MAXIMUM RATINGS
Rating Drain-Source Voltage Drain-Gate Voltage Gate-Source Voltage Drain Current -- Continuous Total Device Dissipation @ TC = 25C Derate above 25C Storage Temperature Range Operating Junction Temperature Symbol VDSS VDGO VGS ID PD Tstg TJ Value 65 65 40 32 500 2.85 -65 to +150 200 Unit Vdc Vdc Vdc Adc Watts W/C C C
THERMAL CHARACTERISTICS
Characteristic Thermal Resistance, Junction to Case Symbol RJC Max 0.35 Unit C/W
NOTE -- CAUTION -- MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
www..com
REV 3
1
www..com
ELECTRICAL CHARACTERISTICS (TC = 25C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain-Source Breakdown Voltage (VGS = 0, ID = 100 mA) Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) Gate-Body Leakage Current (VGS = 20 V, VDS = 0) V(BR)DSS IDSS IGSS 65 -- -- -- -- -- -- 5.0 1.0 Vdc mAdc Adc
ON CHARACTERISTICS (1)
Gate Threshold Voltage (VDS = 10 V, ID = 100 mA) Drain-Source On-Voltage (VGS = 10 V, ID = 10 A) Forward Transconductance (VDS = 10 V, ID = 5.0 A) VGS(th) VDS(on) gfs 1.0 0.1 5.0 3.0 0.9 7.0 5.0 1.5 -- Vdc Vdc mhos
DYNAMIC CHARACTERISTICS (1)
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss Coss Crss -- -- -- 350 420 35 -- -- -- pF pF pF
FUNCTIONAL TESTS (2)
Common Source Amplifier Power Gain (VDD = 28 V, Pout = 300 W, IDQ = 500 mA, f = 175 MHz) Drain Efficiency (VDD = 28 V, Pout = 300 W, f = 175 MHz, ID (Max) = 21.4 A) Load Mismatch (VDD = 28 V, Pout = 300 W, IDQ = 500 mA, f = 175 MHz, VSWR 5:1 at all Phase Angles) NOTES: 1. Each side measured separately. 2. Measured in push-pull configuration. Gps No Degradation in Output Power 12 45 14 55 -- -- dB %
www..com
REV 3
2
www..com
R1 + BIAS 0-6 V INPUT
L2 C4 C5 C10 T2 C11 L1 C13 C6 C1 C3 C7 C8 C9
C12
DUT C2 T1
+ 28 V OUTPUT
HIGH IMPEDANCE WINDINGS CENTER TAP
CENTER TAP
9:1 IMPEDANCE RATIO
4:1 IMPEDANCE RATIO
CONNECTIONS TO LOW IMPEDANCE WINDINGS
C1 -- Arco 402, 1.5-20 pF C2 -- Arco 406, 15-115 pF C3, C4, C8, C9, C10 -- 1000 pF Chip C5, C11 -- 0.1 F Chip C6 -- 330 pF Chip C7 -- 200 pF and 180 pF Chips in Parallel C12 -- 0.47 F Ceramic Chip, Kemet 1215 or Equivalent C13 -- Arco 403, 3.0-35 pF L1 -- 10 Turns AWG #16 Enameled Wire, L1 -- Close Wound, 1/4 I.D. L2 -- Ferrite Beads of Suitable Material for L2 -- 1.5-2.0 H Total Inductance R1 -- 100 Ohms, 1/2 W R2 -- 1.0 kOhm, 1/2 W
T1 -- 9:1 RF Transformer. Can be made of 15-18 Ohms T1 -- Semirigid Co-Ax, 62-90 Mils O.D. T2 -- 1:9 RF Transformer. Can be made of 15-18 Ohms T2 -- Semirigid Co-Ax, 70-90 Mils O.D. Board Material -- 0.062 Fiberglass (G10), 1 oz. Copper Clad, 2 Sides, r = 5 NOTE: For stability, the input transformer T1 must be loaded NOTE: with ferrite toroids or beads to increase the common NOTE: mode inductance. For operation below 100 MHz. The NOTE: same is required for the output transformer. See pictures for construction details.
Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or Equivalent.
Figure 1. 175 MHz Test Circuit
TYPICAL CHARACTERISTICS
VGS, GATE SOURCE VOLTAGE (NORMALIZED) 100 I D, DRAIN CURRENT (AMPS) 1.04 1.03 1.02 1.01 1 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.9 -25
ID = 5 A
10
4A 2A 1A 0.5 A 0 25 50 TC, CASE TEMPERATURE (C) 75 0.25 A 100
TC = 25C 1 1 10 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 100
Figure 2. DC Safe www..com Operating Area
Figure 3. Gate-Source Voltage versus Case Temperature
REV 3
3
www..com
TYPICAL CHARACTERISTICS
2000 f T, UNITY GAIN FREQUENCY (MHz) VDS = 20 V C, CAPACITANCE (pF) 10 V 1000 2000 Coss Ciss 200
Crss
0
0
2
4
6 8 10 12 14 ID, DRAIN CURRENT (AMPS)
16
18
20
20
0
5 10 15 20 VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
25
NOTE: Data shown applies to each half of MRF141G.
NOTE: Data shown applies to each half of MRF141G.
Figure 4. Common Source Unity Gain Frequency versus Drain Current
30 Pout , OUTPUT POWER (WATTS) 25 20 15 10 5 VDD = 28 V IDQ = 2 x 250 mA Pout = 300 W 2 5 10 30 f, FREQUENCY (MHz) 100 200 400 350 300 250 200 150 100 50 0 12 14
Figure 5. Capacitance versus Drain-Source Voltage
G PS , POWER GAIN (dB)
f = 175 MHz IDQ = 250 mA x 2
Pin = 30 W 20 W 10 W
16
18 20 22 SUPPLY VOLTAGE (VOLTS)
24
26
28
Figure 6. Power Gain versus Frequency
Figure 7. Output Power versus Supply Voltage
150 125 100
f = 175 MHz
INPUT, Zin (GATE TO GATE) 150 f = 175 MHz 30 OUTPUT, ZOL* (DRAIN TO DRAIN)
125 100 30 Zo = 10
www..com
ZOL* = Conjugate of the optimum load impedance ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency.
Figure 8. Input and Output Impedances
REV 3
4
AAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA AA A A
REV 3
www..com
www..com
5
NOTE: S-Parameter data represents measurements taken from one chip only.
f MHz
430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 100 110 90 80 70 60 50 40 30
0.984 0.983 0.983 0.982 0.982 0.982 0.982 0.983 0.982 0.982 0.982 0.981 0.980 0.980 0.979 0.979 0.978 0.977 0.975 0.974 0.973 0.972 0.970 0.968 0.965 0.962 0.958 0.954 0.951 0.948 0.944 0.938 0.930 0.920 0.909 0.899 0.890 0.883 0.876 0.867 0.845 |S11|
S11
Table 1. Common Source S-Parameters (VDS = 24 V, ID = 0.57 A)
-180
-180
-179
-179
-179
-178
-178
-178
-177
-177
-176
-176
-176
-176
-175
-175
-175
-174
-174
-174
-174
175 175 175 176 176 176 176 177 177 177 177 178 178 178 178 179 179 179 180 180
|S21|
0.09 0.09 0.10 0.09 0.10 0.10 0.10 0.13 0.13 0.15 0.13 0.16 0.16 0.16 0.17 0.19 0.22 0.21 0.24 0.24 0.25 0.27 0.30 0.34 0.40 0.45 0.48 0.52 0.56 0.60 0.67 0.78 0.95 1.13 1.36 1.57 1.85 2.12 2.62 3.23 4.88
S21
15 16 12 14 10 16 19 10 15 13 13 13 17 19 20 17 15 15 15 17 24 29 32 32 31 31 33 37 43 50 56 58 59 62 66 78 7 6 8 8 1
0.028 0.025 0.020 0.018 0.021 0.023 0.023 0.020 0.016 0.016 0.017 0.017 0.015 0.013 0.012 0.012 0.013 0.012 0.009 0.008 0.008 0.008 0.008 0.007 0.006 0.006 0.005 0.005 0.006 0.006 0.007 0.007 0.009 0.010 0.012 0.012 0.013 0.013 0.014 0.011 0.011 |S12|
S12
-16
-13
-10
-12
-15
-17
-14
-11
-11
70 65 71 83 81 72 65 63 73 81 83 76 70 65 68 72 72 69 68 67 68 68 60 49 41 39 37 31 23 10 -3 -5
1.100 1.090 1.040 0.959 0.993 1.050 1.120 1.150 1.140 1.033 0.979 0.977 0.998 1.040 1.170 1.210 1.200 1.100 1.030 1.045 0.960 0.980 1.090 1.200 1.260 1.190 1.130 1.023 0.964 0.954 1.010 1.100 1.160 1.190 1.036 0.938 0.868 0.856 0.939 1.110 1.110 |S22|
S22
-179
-177
-178
-179
-179
-178
-179
-178
-177
-176
-175
-177
-176
-176
-177
-177
-176
-175
-172
-174
174 174 176 179 177 177 176 177 177 176 178 178 179 179 180 177 177 179 179 179 180
AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A
www..com 310 0.979 178
REV 3
AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AA AA A AA A A AA A AA A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA A AA A
www..com
6
f MHz
f MHz
320 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 100 500 490 480 470 460 450 440 110 90 80 70 60 50 40 30
0.980 0.979 0.979 0.978 0.977 0.976 0.974 0.973 0.972 0.971 0.969 0.967 0.964 0.961 0.957 0.953 0.950 0.947 0.943 0.937 0.929 0.920 0.910 0.899 0.890 0.884 0.878 0.869 0.849 0.984 0.984 0.983 0.983 0.983 0.983 0.983 |S11| |S11|
Table 1. Common Source S-Parameters (VDS = 24 V, ID = 0.57 A) (continued)
S11
S11
Table 2. Common Source S-Parameters (VDS = 28 V, ID = 0.65 A)
-180
-180
-179
-179
-179
-178
-178
-178
-177
-177
-176
-176
-176
-176
-176
-175
-175
-174
-174
-174
-174
178 178 178 179 179 179 180 180 173 173 174 174 174 174 174
|S21|
|S21|
0.17 0.17 0.18 0.19 0.21 0.24 0.24 0.27 0.27 0.28 0.31 0.35 0.39 0.45 0.51 0.54 0.58 0.63 0.67 0.75 0.88 1.07 1.26 1.52 1.75 2.06 2.36 2.91 3.59 5.41 0.07 0.07 0.07 0.07 0.07 0.09 0.09
S21
S21
14 13 12 12 17 19 20 17 15 15 15 18 24 29 32 32 32 32 34 37 43 51 56 59 60 62 67 79 18 13 16 13 14 13 12 8 2
0.012 0.013 0.013 0.013 0.010 0.009 0.010 0.010 0.009 0.006 0.005 0.005 0.006 0.006 0.006 0.005 0.004 0.003 0.004 0.006 0.008 0.009 0.009 0.009 0.010 0.012 0.013 0.013 0.035 0.036 0.032 0.024 0.022 0.025 0.028 0.011 0.011 |S12| |S12|
S12
S12
-15
-19
-18
-14
-13
-17
-16
-11
88 89 78 70 66 73 85 88 78 66 59 63 69 65 53 36 18 -4 -6 85 74 60 56 66 82 77 6 6 5
0.988 0.975 1.000 1.040 1.170 1.220 1.200 1.090 1.030 1.040 0.975 1.030 1.200 1.250 1.180 1.120 1.030 0.966 0.953 1.000 1.100 1.150 1.190 1.029 0.928 0.859 0.849 0.934 1.040 0.996 0.970 0.992 1.080 1.090 1.100 1.110 1.110 |S22| |S22|
S22
S22
-179
-177
-178
-179
-179
-178
-178
-178
-177
-176
-175
-177
-175
-175
-177
-177
-176
-174
-172
-174
177 179 179 180 178 177 179 180 179 180 174 174 175 175 174 176 175
AAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAA A A A A A A A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A A AA AA A A A AA AA A A AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A AA AA A A
www..com
www..com
7
REV 3
f MHz
500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330
0.983 0.983 0.983 0.983 0.982 0.983 0.983 0.983 0.983 0.983 0.982 0.982 0.982 0.982 0.982 0.982 0.982 0.981 |S11|
Table 2. Common Source S-Parameters (VDS = 28 V, ID = 0.65 A) (continued)
S11
173 173 174 174 174 174 174 175 175 175 176 176 176 176 177 177 177 177
|S21|
0.08 0.08 0.08 0.08 0.08 0.10 0.10 0.10 0.10 0.10 0.12 0.12 0.14 0.15 0.16 0.14 0.11 0.11
S21
17 12 15 10 10 14 15 13 14 17 11 11 9 9 6 6 8 9
0.021 0.019 0.021 0.023 0.024 0.021 0.018 0.019 0.021 0.021 0.018 0.016 0.015 0.017 0.018 0.018 0.015 0.013 |S12|
S12
78 87 90 82 70 71 76 85 87 83 78 72 77 82 82 80 75 80
1.010 0.971 0.974 0.996 1.080 1.130 1.130 1.090 1.070 1.050 0.958 0.992 1.060 1.120 1.160 1.130 1.050 1.110 |S22|
S22
174 175 176 175 174 176 175 175 175 176 179 177 177 176 177 177 176 177
www..com
RF POWER MOSFET CONSIDERATIONS
MOSFET CAPACITANCES The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate-to-drain (Cgd), and gate- to-source (C gs ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (Cds). These capacitances are characterized as input (Ciss), output (Coss) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways: 1. Drain shorted to source and positive voltage at the gate. 2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.
DRAIN Ciss = Cgd = Cgs Coss = Cgd = Cds Crss = Cgd
ing should be avoided. These conditions can result in turn- on of the device due to voltage build-up on the input capacitor due to leakage currents or pickup. Gate Protection -- This device does not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on. HANDLING CONSIDERATIONS When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron. DESIGN CONSIDERATIONS The MRF141G is an RF Power, MOS, N-channel enhancement mode field-effect transistor (FET) designed for HF and VHF power amplifier applications. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal. DC BIAS The MRF141G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF141G was characterized at IDQ = 250 mA, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF141G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.
Cgd GATE
Cds Cgs
SOURCE
LINEARITY AND GAIN CHARACTERISTICS In addition to the typical IMD and power gain data presented, Figure 4 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent. DRAIN CHARACTERISTICS One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device. GATE CHARACTERISTICS The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high -- on the order of 109 ohms -- resulting in a leakage current of a few nanoamperes. Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th). Gate Voltage Rating -- Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent www..com damage to the oxide layer in the gate region. Gate Termination -- The gate of this device is essentially capacitor. Circuits that leave the gate open-circuited or floatREV 3
8
www..com
PACKAGE DIMENSIONS
U G
1 2
Q
RADIUS 2 PL
0.25 (0.010)
M
TA
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E G H J K N Q R U INCHES MIN MAX 1.330 1.350 0.370 0.410 0.190 0.230 0.215 0.235 0.050 0.070 0.430 0.440 0.102 0.112 0.004 0.006 0.185 0.215 0.845 0.875 0.060 0.070 0.390 0.410 1.100 BSC STYLE 2: PIN 1. 2. 3. 4. 5. MILLIMETERS MIN MAX 33.79 34.29 9.40 10.41 4.83 5.84 5.47 5.96 1.27 1.77 10.92 11.18 2.59 2.84 0.11 0.15 4.83 5.33 21.46 22.23 1.52 1.78 9.91 10.41 27.94 BSC
R
5
-B- K
3 4
D N J
E H
-T- -A- C
SEATING PLANE
DRAIN DRAIN GATE GATE SOURCE
CASE 375-04 ISSUE D
Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 www..com n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 3
9


▲Up To Search▲   

 
Price & Availability of MRF141G

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X